

DIPARTIMENTO INFORMATICA, BIOINGEGNERIA, ROBOTICA E INGEGNERIA DEI SISTEMI **Computer Science Workshop** PhD program in Computer Science and Systems Engineering

Time-to-Label: Temporal Consistency for Self-Supervised Monocular 3D Object Detection

Issa Mouawad, Nikolas Brasch, Fabian Manhardt, Federico Tombari, Francesca Odone

Motivations

• 3D perception is essential for several applications (Autonomous Driving, Robotics,...)

Additionally, the **raw lidar** available during training is used to establish alignment between the predicted pose and the observed geometry using Chamfer distance:

$$\mathcal{L}_{CD} = \sum \min ||x - y||_{2}^{2} + \sum \min ||x - y||_{2}^{2}, \qquad (2)$$

- The annotation process for 3D tasks is expensive and labor-intensive
- Self-supervised learning proved beneficial to reduce the amount of supervision for several other visual tasks

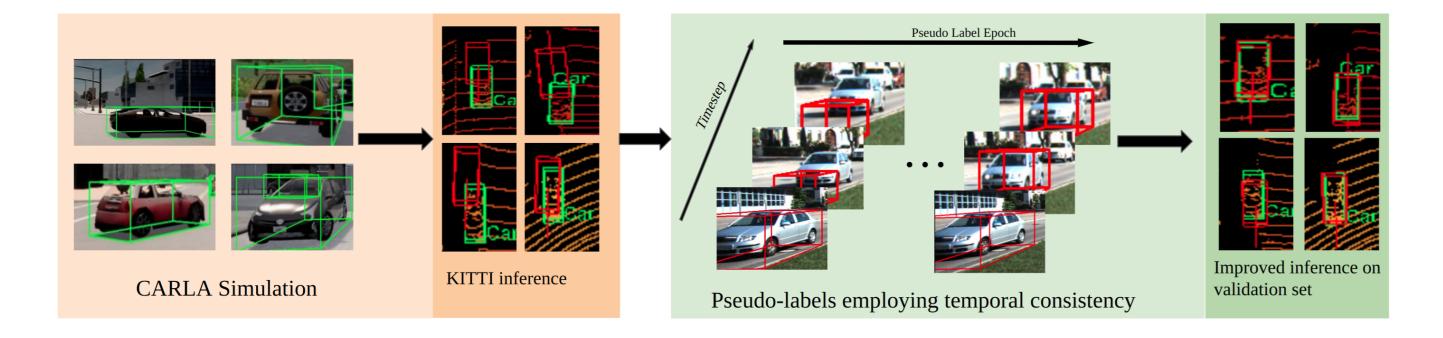
Objective

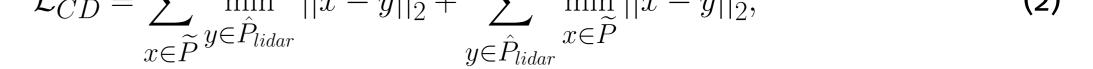
Training a **monocular** 3D object detector without access to manually generated labels

Contributions

- 1. A self-supervised framework to address 3D object detection without labels
- 2. A self-supervised loss that harnesses temporal and geometric prior in video sequences
- 3. Achieving state-of-the-art results on unsupervised 3D object detection.

Method Overview





Experimental Analysis

1- Pseudo-labels Quality

We generate high-quality pseudo-labels compared to other similar methods [2] vspace0.2cm

Iteration	AP 2D %			AP BEV %		
	Easy	Mod	Hard	Easy	Mod	Hard
1	84.5	63.2	56.0	66.7	45.0	37.9
2	91.5	67.3	57.6	87.2	60.5	50.8
3	91.9	69.8	60.1	89.9	63.1	53.4
Autolabeling [2]	Grou	nd tru	ith boxes	77.8	59.7	N/A

2- Evaluation on KITTI Validation Set

We finetune the detector with the generated pseudo-labels, and outperform other unsupervised methods on unseen validation set

	AP_{BEV} / AP_{3D} (AP_{R11} @ 0.5 loU)				
Method	Images	Easy	Mod	Hard	
Supervised					
Deep3DBBox	trainsplit	30.02/27.04	23.77/20.55	18.83/15.88	
Mono3D	trainsplit	30.50/25.19	22.39/18.20	19.16/15.52	
M3D-RPN	trainsplit	55.37/48.96	42.49/39.57	35.29/33.01	
LPCG-M3D-RPN [1]	trainsplit	67.66/61.75	52.27 /49.51	46.65/ <mark>44.70</mark>	
MonoFlex [3]	trainsplit	<mark>68.62</mark> /65.33	51.61/ <mark>49.54</mark>	<mark>49.73</mark> /43.04	

Unsupervised

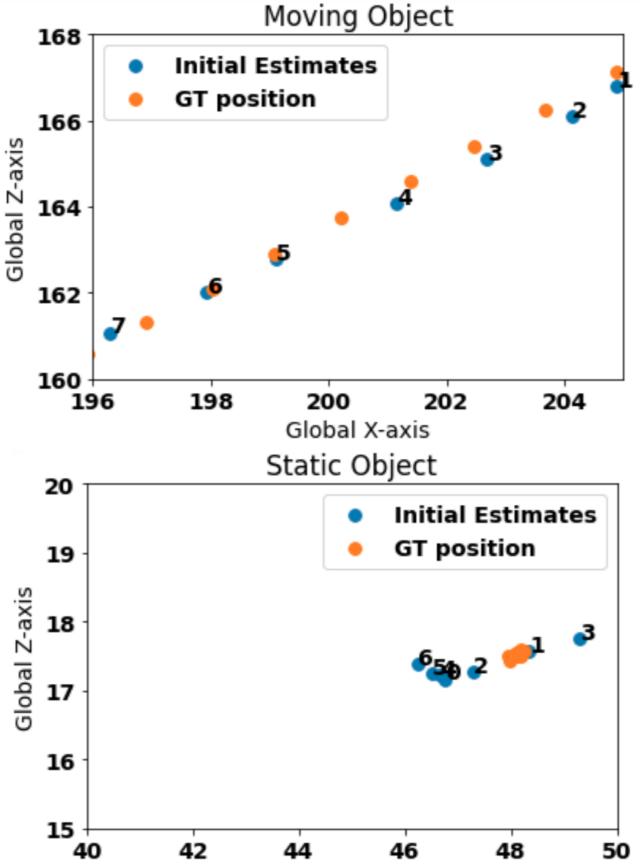
- 1. 3D monocular object detector is trained on synthetic data
- 2. The detector is used to generate initial estimates on the real-images dataset
- 3. The initial estimates are refined using geometry priors and our novel self-supervised loss
- 4. The resulting estimates are used as pseudo-labels to finetune the detector

Temporal Prior

We use the trajectories we recover, in addition to the ego-motion from on-board sensors, to classify the motion state of objects to: **Static** and **Moving** objects. Using the trajectory and the motion status, we derive, at each time step, the temporally consistent translation and rotation: $t_i^{temporal}$, $yaw_i^{temporal}$

Self-supervised Loss

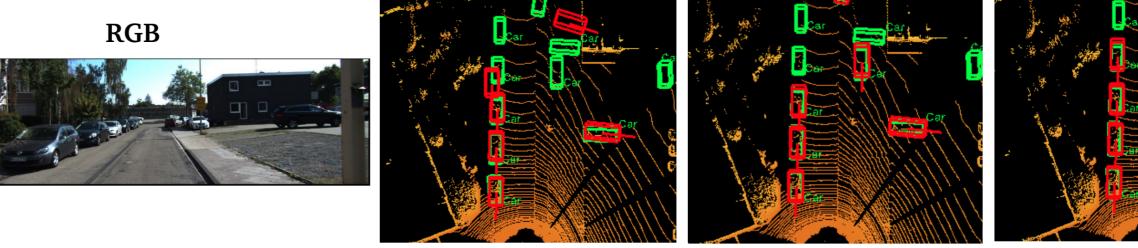
We use the temporal prior established on objects motion to further regularize the re-fined translation and rotation:



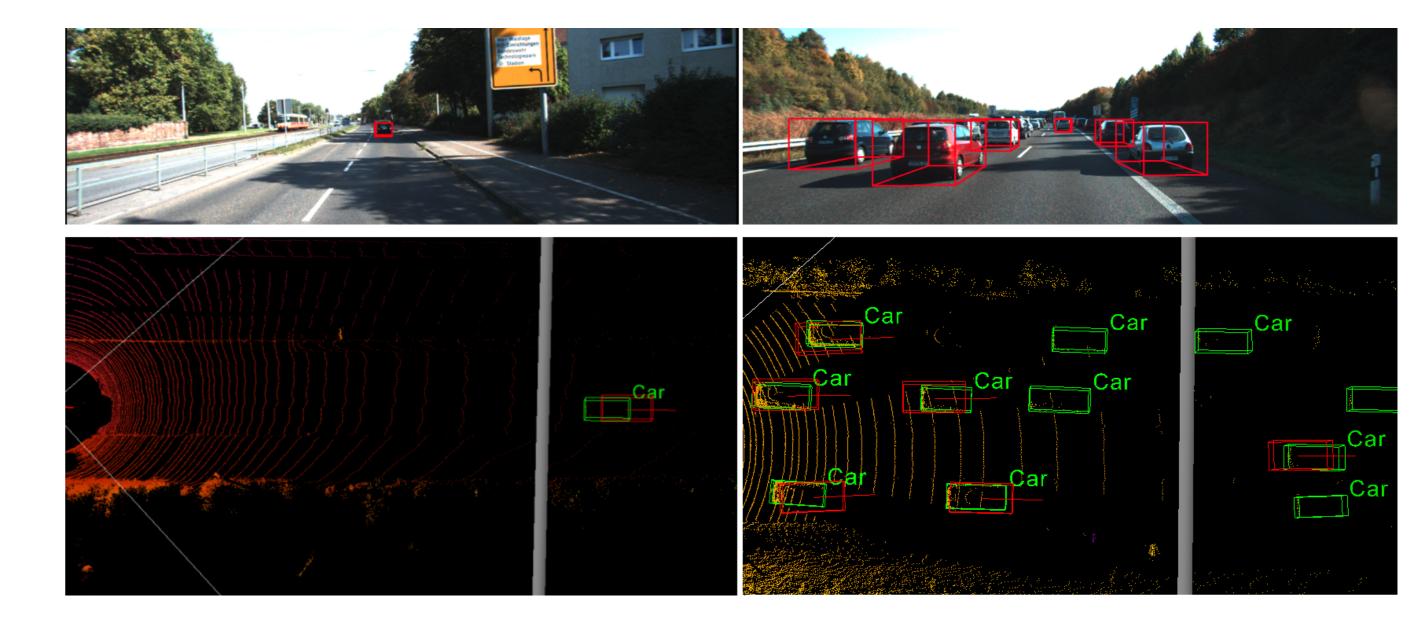
MonoDIS- SDFLabel [2]	trainsplit	51.10/32.90	34.50/22.10	-
Ours w/ MonoFlex	trainsplit	52.43/36.71	37.55/26.74	31.21/22.09
MonoDR	-	51.13/45.76	37.29/32.31	30.20/26.19
LPCG-M3D-RPN[1]	Raw data	52.06/47.58	35.37/29.06	28.61/26.58
Ours w/ MonoFlex	Raw data	63.94 <mark>/</mark> 51.90	42.29/33.24	35.31/30.39

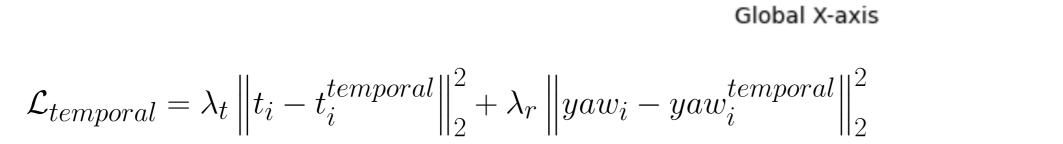
Pseudo-Labels

Pseudo Labels Iteration 1 Pseudo Labels Iteration 2 Pseudo Labels Iteration 3



Inference on validation set





Contacts

Issa Mouawad issa.mouawad@dibris.unige.it

Main References

(1)

[1] Liang Peng, Fei Liu, Zhengxu Yu, Senbo Yan, Dan Deng, and Deng Cai. Lidar point cloud guided monocular 3d object detection. *arXiv preprint arXiv:2104.09035*, 2021.

[2] Sergey Zakharov, Wadim Kehl, Arjun Bhargava, and Adrien Gaidon. Autolabeling 3d objects with differentiable rendering of sdf shape priors. In CVPR, 2020.

[3] Yunpeng Zhang, Jiwen Lu, and Jie Zhou. Objects are different: Flexible monocular 3d object detection. In *CVPR*, 2021.

