

DIPARTIMENTO **INFORMATICA, BIOINGEGNERIA, ROBOTICA E INGEGNERIA DEI SISTEMI** **Computer Science Workshop** PhD program in Computer Science and Systems Engineering

Table Augmentation in Data Lakes

Federico Dassereto, Giovanna Guerrini

Relational-like operations at large scale

Motivation and Context

- Data Lakes are large repositories of both structured and unstructured data, among which tables without any schema information [1]
- Tables are extremely valuable due to their origin, since enterprises and administrative offices publish them daily

Key Concepts

Paradigm for data lake exploration, in which the query is a com-Table-as-a-Query alata table rather than a string representation

- The lack of a common schema inside Data Lakes makes it difficult to efficiently perform traditional data management operations, such as joins over different tables
- Existing approaches only focus on retrieving tables whose columns are the best option for joinability, without considering the amount of information that can be added but actually materializing the join [2]
- We focus on a discovery scenario, recognizing as relevant joinability, unionability and augmentation operations.

Figure 1: Table-as-a-query paradigm. Entire tables as query rather than string representations

The Problem

Given a data lake $D = (C_1, ..., C_k)$, a query table Q, a join column Q.J, a target column Q.T, the goal is to provide a ranking of tables $C_i \in D$ such that:

	plete table rather than a string representation
Data Lake	Large repository of tables sharing no schema information
Joinability Search	Searching of tables that can be horizontally concatenated; the two (or more) tables must share a common column
Augmentation	A more specific joinability search where the most relevant columns are not the most overlapping but the ones <i>augmenting the infor-</i> <i>mation the most</i> concerning a Machine Learning task such as Clas- sification on Regression

Design Choices

The ideal solution to augment would be checking every possible pair of columns.

Limitations:

- This approach is inefficient due to the size of data lakes
- Computing every possible pairs is unfeasible, so we search for approximate answers, by probing an indexing structure based on hashing functions.

Solutions:

- The index store information for each column with a single hash signature
- The index allows for a fast retrieval of candidate tables joining with the join column of the query table
- Probing the index results in a ranking of tables order by augmentation of information, where augmentation is quantified in terms of information theory

1. $\exists j \in C_i$ s.t. $Q.J \tilde{\bowtie} A_i.j$ **2.** $\exists A_a \in C_i$ s.t. $corr(A_a, Q.T)$

Where $\tilde{\bowtie}$ denotes a fuzzy join over sets and $corr(\cdot, \cdot)$ denotes a positive correlation among two columns and represents the augmentation of information. The output is a ranking $R = (C_1, ..., C_k)$ in which tables are ordered by *augmentation of information* obtained by probing an *index structure*.

Figure 2: Overview of the schema to solve the problem

References

• We allow for one-to-one joins over columns acting as key in their tables

$H(Q.T | C_1.A_i) < H(Q.T | C_2.A_i)$

Figure 3: Table C_1 augments the information the most, since $C_1 A_i$ helps predict whether the cities in the join column Q.J are in Europe or not. Augmentation is here expressed in terms of conditional entropy

Forthcoming Research

- Implementation of ad-hoc hashing functions to preserve and capture similarities in columns, depending on their types
- A priori pruning on joinability search and augmentation evaluation to speed up the execution time
- Extension to different kind of joins, one-to-many and many-to-many

[1] Renée J. Miller. Open data integration. *Proc. VLDB Endow.*, 11(12):2130–2139, 2018.

[2] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J Miller. Josie: Overlap set similarity search for finding joinable tables in data lakes. In Proceedings of the 2019 International *Conference on Management of Data*, 2019.

Data Management and Analysis

Research Group (DaMa)

CONTACTS

Giovanna Guerrini **Federico Dassereto** federico.dassereto@edu.unige.it giovanna.guerrini@unige.it

EXTERNAL COLLABORATORS

Laura Di Rocco laura.dirocco@bayer.com **Renée J. Miller** miller@northeastern.edu

