
Enhanced Regular Corecursion for Data Streams

Pietro Barbieri

Introduction
As we venture deeper into the Internet of Things (IoT) era, stream process-
ing is becoming increasingly important. With our recent work, we propose
a stream calculus to lay the foundations of a tool for real time analysis of
potentially infinite flowing data series.

Main Objectives

•Develop a calculus to define and manipulate infinite streams
•Provide a procedure to check whether a stream is well-defined
•Achieve a good compromise between expressive power and decidability

State of the Art

Two complementary approaches to manipulate streams:

Lazy Evaluation

Streams defined by arbitrary functions and inspected as much as needed.

•Widely known and well-established solution for stream processing
• Supports both regular (cyclic) and non-regular streams

Pros

•Operations that need to inspect the whole stream cannot be computed
•Allows the definition of incorrect streams due to high expressive power

Cons

one_two = 1:2: one_two //1:2:1:2:1:...

from n = n:from(n+1) // naturals from n

head (from 0) −→ 0

allPositive one_two −→ ⊥ //non -termination

bad_stream = 0:tail bad_stream

Examples

Regular Corecursion

Streams are finitely represented by sets of equations. The executions
avoids non-termination by keeping track of already processed calls.

• The entire stream can be inspected because it is finitely represented by a
set of equations

Pros

• Fails to model non-regular streams

Cons

allPositive(one_two ()) −→ true

head(from (0)) −→ ⊥ //non -termination

Examples

Our Solution

• Enhances regular corecursion
– Not only constructors are allowed in equations defining streams
– Supports regular and (some) non-regular streams
•Provides a procedure to check whether a stream definition is correct

–bad_stream() −→ runtime error

Examples

repeat(n) = n:repeat(n) //n:n:n:n:...

one_two () = 1:2: one_two () //1:2:1:2...

Simple cyclic streams

Note: [+][*][/] are pointwise operations on streams, � computes the tail.

nat() = 0:(nat ()[+] repeat (1))

fact() = 1:((nat ()[+] repeat (1))[*] fact ())

fib() = 0:1:(fib ()[+] fib ()^)

Non-regular streams

nat() −→ 0 1 2 3 ...

fact() −→ 1 2 6 24 ...

fib() −→ 0 1 1 2 ...

aggr(n,s) = if n<=0 then repeat (0)

else s[+] aggr(n-1,s^)

avg(n,s) = aggr(n,s)[/] repeat(n)

Functions for stream processing

Below you find an example of execution of avg over a window of size 3

4 2 6 7 5 ...︸ ︷︷ ︸
avg = 4︸ ︷︷ ︸

avg = 5︸ ︷︷ ︸
avg = 6

Forthcoming Research

•Make function definitions more flexible
– The user is allowed to specify the behaviour in presence of a cycle
• Introduce a static type system to prevent runtime errors

Reference paper:

Davide Ancona, Pietro Barbieri, Elena
Zucca. Enhanced Regular Corecursion for
Data Streams. ICTCS21

CONTACTS

Davide Ancona
Davide.Ancona@unige.it

Pietro Barbieri
pietro.barbieri@edu.unige.it

Elena Zucca
Elena.Zucca@unige.it

https://arxiv.org/abs/2108.00281
https://arxiv.org/abs/2108.00281
http://helm.cs.unibo.it/ictcs2021/

