
Sharing coeffects for Java-like languages
Riccardo Bianchini

Abstract
Modern applications are thought to be resource-aware, so it is very useful to focus on the
concept of resource and to keep track of the use of them. Coeffect systems provide a static
control capable to guarantee interesting properties on the usage of tracked objects. Our
goal is to develop a coeffect system to track the sharing among objects in memory and to
express interesting properties of references, such as the capsule property.

Coeffects
Coeffect systems are, in a sense, the dual of effect systems. The latter track how the pro-
gram modifies the environment, coeffect systems what the program requires from the con-
text of a computation. There are two kinds of coeffect systems:

Structural coeffects
Each variable in the context is annotated independently. For instance, it is possible to ex-
press that a variable is used a certain number of times by a structural coeffect marking
each variable in the context with the corresponding number.

Flat coeffects
The whole context is annotated. For instance, a flat coeffect can be used in Haskell to keep
track of implicit parameters that are required by an expression (and their types).

Structure of coeffects
Coeffects are assumed to form a semiring, that is, a tuple (C,⊕,0,⊗,1) such that
• (C,⊕,0) is a commutative monoid.
• (C,⊗,1) is a monoid.
• Given c1, c2, c3 in C

– c1 ⊗ (c2 ⊕ c3) = (c1 ⊗ c2)⊕ (c1 ⊗ c3).
– (c1 ⊕ c2)⊗ c3 = (c1 ⊗ c3)⊕ (c2 ⊗ c3).
• Given c in C

– 0⊗ c = c ⊗ 0 = 0.

A simple example of coeffect system

This coeffect system for the simply-typed lambda calculus checks how many times vari-
ables are used.

t ::= x | λx :T .t | t1 t2 | n
n ::= 1 | 2 | . . .
T ::= T1

c−→ T2 | int
Functional types are enriched with an annotation c specifying the coeffect required for

the parameter in the body.

Semiring of coeffects

The semiring is ({0,1, ω},⊕,0,⊗,1). Coeffect 0 is assigned to unused variables, 1 to
variables used linearly (exactly once), ω to unrestricted variables.

⊕ 0 1 ω

0 0 1 ω

1 1 ω ω

ω ω ω ω

⊗ 0 1 ω

0 0 0 0

1 0 1 ω

ω 0 ω ω

Typing rules

(t-var)
0⊗ Γ, x :1 T ⊢ x : T

(t-abs)
Γ, x :c T1 ⊢ t : T2

Γ ⊢ λx :T1.t : T1
c−→ T2

(t-app)
Γ1 ⊢ t1 : T2

c−→ T1 Γ2 ⊢ t2 : T2

Γ1 ⊕ (c ⊗ Γ2) ⊢ t1 t2 : T1

For the term λx :int.λf :int
1−→ T .f 3 the following judgments holds:

∅ ⊢ λx :int.λf :int
1−→ T .f 3 : int

0−→ (int
1−→ T)

1−→ T

x :0 int ⊢ λf :int
1−→ T .f 3 : (int

1−→ T)
1−→ T

x :0 int, f :1 int
1−→ T ⊢ f 3 : T

Sharing
In the imperative programming paradigm, sharing is the situation when a portion of the
store can be accessed through more than one reference, say x and y , so that a change to
x affects y as well.

Interesting properties of a reference
• Capsule: the subgraph reachable from x cannot be reached through other references.
• Lent: the subgraph reachable from x can be manipulated, but not shared, by a client.
• Read-only: the object graph of x cannot be modified through x .
• Immutable: the object graph of x will not be modified through any reference.

A coeffect system for sharing
We assume a countable set Lnk of links, ranged over by ℓ, with a distinguished element
res, and an operation ◁ defined by

ℓ ◁ ℓ′ =

{
ℓ if ℓ′ = res

ℓ′ otherwise

Structure
The sharing coeffects semiring is the tuple (Pf(Lnk),⊕,0, ◁,1), where Pf(Lnk) is the fi-
nite powerset ofLnk, ◁ is the lifting of ◁ to sets, that is,X ◁ Y = {ℓ1 ◁ ℓ2 | ℓ1 ∈ X , ℓ2 ∈ Y },
and ⊕ is the set union. The fact that the link res (a link with the result) is in X models
possible sharing between x and the final result of the expression.

An example

class B {int f;}

class C {B f1; B f2;}

in x.f1=y; new C(z1, z2) the evaluation of the expression introduces sharing between
x and y, and between z1, z2, and the final result.
The following typing judgment is derivable:

x :{ℓ} C, y :{ℓ} B, z1 :{res} B, z2 :{res} B ⊢ x.f=y; new C(z1, z2) : C

Expected result
Execution preserves sharing

Future goals
• Providing full proofs
• Checking the expressivity on significant examples from the literature
• Designing a convenient programmer’s interface
• Analyzing the impact on other OO features

CONTACTS

Riccardo Bianchini
riccardo.bianchini@edu.unige.it

Francesco Dagnino
francesco.dagnino@dibris.unige.it

Paola Giannini
paola.giannini@uniupo.it

Elena Zucca
elena.zucca@unige.it

